Measuring the effect of fuel treatments on forest carbon using landscape risk analysis
نویسندگان
چکیده
Wildfire simulation modelling was used to examine whether fuel reduction treatments can potentially reduce future wildfire emissions and provide carbon benefits. In contrast to previous reports, the current study modelled landscape scale effects of fuel treatments on fire spread and intensity, and used a probabilistic framework to quantify wildfire effects on carbon pools to account for stochastic wildfire occurrence. The study area was a 68 474 ha watershed located on the Fremont-Winema National Forest in southeastern Oregon, USA. Fuel reduction treatments were simulated on 10% of the watershed (19% of federal forestland). We simulated 30 000 wildfires with random ignition locations under both treated and untreated landscapes to estimate the change in burn probability by flame length class resulting from the treatments. Carbon loss functions were then calculated with the Forest Vegetation Simulator for each stand in the study area to quantify change in carbon as a function of flame length. We then calculated the expected change in carbon from a random ignition and wildfire as the sum of the product of the carbon loss and the burn probabilities by flame length class. The expected carbon difference between the nontreatment and treatment scenarios was then calculated to quantify the effect of fuel treatments. Overall, the results show that the carbon loss from implementing fuel reduction treatments exceeded the expected carbon benefit associated with lowered burn probabilities and reduced fire severity on the treated landscape. Thus, fuel management activities Correspondence to: A. A. Ager ([email protected]) resulted in an expected net loss of carbon immediately after treatment. However, the findings represent a point in time estimate (wildfire immediately after treatments), and a temporal analysis with a probabilistic framework used here is needed to model carbon dynamics over the life cycle of the fuel treatments. Of particular importance is the longterm balance between emissions from the decay of dead trees killed by fire and carbon sequestration by forest regeneration following wildfire.
منابع مشابه
Forest wildfire, fuel reduction treatments, and landscape carbon stocks: a sensitivity analysis.
Fuel reduction treatments prescribed in fire-suppressed forests of western North America pose an apparent paradox with respect to terrestrial carbon management. Such treatments have the immediate effect of reducing forest carbon stocks but likely reduce future carbon losses through the combustion and mortality caused by high-severity wildfires. Assessing the long-term impact of fuel treatment o...
متن کاملAssessment the effect of Slope aspect and position on some soil microbial indices in rangeland and forest
Extended abstract Introduction Topography is one of the effective factors in soil formation and development. Topographical features such as slope aspect and position, by affecting soil temperature, evaporation capacity, soil moisture content, soil organic matter, precipitation, movement, and accumulation of soil solution can impress soil microbial properties. For investigating the ...
متن کاملSimulating Fire and Forest Dynamics for a Landscape Fuel Treatment Project in the Sierra Nevada
We evaluated an actual landscape fuel treatment project that was designed by local US Forest Service managers in the northern Sierra Nevada. We modeled the effects of this project on reducing landscape-level fire behavior at multiple time steps, up to nearly 30 years beyond treatment implementation. In addition, we modeled planned treatments under multiple diameter-limited thinning scenarios to...
متن کاملA comparison of landscape fuel treatment strategies to mitigate wildland fire risk in the urban interface and preserve old forest structure
We simulated fuel reduction treatments on a 16,000 ha study area in Oregon, US, to examine tradeoffs between placing fuel treatments near residential structures within an urban interface, versus treating stands in the adjacent wildlands to meet forest health and ecological restoration goals. The treatment strategies were evaluated by simulating 10,000 wildfires with random ignition locations an...
متن کاملVariation in tree mortality and regeneration affect forest carbon recovery following fuel treatments and wildfire in the Lake Tahoe Basin, California, USA
BACKGROUND Forest fuel treatments have been proposed as tools to stabilize carbon stocks in fire-prone forests in the Western U.S.A. Although fuel treatments such as thinning and burning are known to immediately reduce forest carbon stocks, there are suggestions that these losses may be paid back over the long-term if treatments sufficiently reduce future wildfire severity, or prevent deforesta...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2010